ETL Batch Pipeline
Comprehensive guide to building robust ETL batch processing pipelines
Efficient processing of large datasets in scheduled batches
Comprehensive validation and quality monitoring
Robust job scheduling and dependency management
ETL Data Architecture
Design a comprehensive data architecture for batch ETL processing with proper staging and data quality.
## ETL Batch Processing Architecture
### Data Flow Stages
1. **Extract**: Source systems, file systems, APIs, databases
2. **Transform**: Data cleansing, validation, enrichment, aggregation
3. **Load**: Target data warehouse, data marts, operational stores
### Staging Area Design
- **Raw Zone**: Unprocessed data from source systems
- **Staging Zone**: Cleaned and validated data
- **Processed Zone**: Transformed and aggregated data
- **Archive Zone**: Historical data for compliance
### Data Quality Framework
- **Validation Rules**: Data type, range, format, business rules
- **Quality Metrics**: Completeness, accuracy, consistency, timeliness
- **Error Handling**: Rejection, correction, notification strategies
- **Monitoring**: Quality dashboards and alerting
### Key Design Principles
- **Idempotency**: Multiple runs produce same result
- **Fault Tolerance**: Graceful handling of failures
- **Scalability**: Horizontal scaling for large datasets
- **Maintainability**: Clear separation of concerns
-- ETL Staging Area Schema
CREATE SCHEMA staging;
CREATE SCHEMA processed;
CREATE SCHEMA archive;
-- Raw data staging table
CREATE TABLE staging.raw_customer_data (
id BIGSERIAL PRIMARY KEY,
source_file VARCHAR(255),
source_timestamp TIMESTAMPTZ,
raw_data JSONB,
processing_status VARCHAR(20) DEFAULT 'PENDING',
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- Cleaned customer data
CREATE TABLE staging.clean_customer_data (
customer_id BIGINT PRIMARY KEY,
first_name VARCHAR(100),
last_name VARCHAR(100),
email VARCHAR(255),
phone VARCHAR(20),
address TEXT,
validation_status VARCHAR(20),
validation_errors TEXT[],
created_at TIMESTAMPTZ DEFAULT NOW(),
updated_at TIMESTAMPTZ DEFAULT NOW()
);
-- Data quality monitoring
CREATE TABLE staging.data_quality_checks (
check_id BIGSERIAL PRIMARY KEY,
table_name VARCHAR(255),
check_type VARCHAR(100),
check_sql TEXT,
expected_result TEXT,
actual_result TEXT,
status VARCHAR(20),
run_timestamp TIMESTAMPTZ DEFAULT NOW()
);
-- ETL job tracking
CREATE TABLE staging.etl_jobs (
job_id BIGSERIAL PRIMARY KEY,
job_name VARCHAR(255),
source_system VARCHAR(100),
target_system VARCHAR(100),
start_time TIMESTAMPTZ,
end_time TIMESTAMPTZ,
status VARCHAR(20),
records_processed BIGINT,
records_failed BIGINT,
error_message TEXT
);
-- Create indexes for performance
CREATE INDEX idx_raw_data_status ON staging.raw_customer_data(processing_status);
CREATE INDEX idx_clean_data_validation ON staging.clean_customer_data(validation_status);
CREATE INDEX idx_etl_jobs_status ON staging.etl_jobs(status, start_time);
Data Transformation Pipeline
Implement robust data transformation logic with error handling and data quality checks.
## Data Transformation Strategies
### Data Cleansing
- **Standardization**: Consistent formats, units, and naming
- **Deduplication**: Remove duplicate records
- **Validation**: Business rule enforcement
- **Enrichment**: Add derived fields and external data
### Transformation Types
- **Simple Transformations**: Data type conversion, formatting
- **Complex Transformations**: Business logic, calculations
- **Aggregations**: Summarization and grouping
- **Joins**: Data integration from multiple sources
### Error Handling Strategies
- **Reject and Continue**: Skip invalid records, log errors
- **Default Values**: Use fallback values for missing data
- **Data Correction**: Apply business rules to fix issues
- **Manual Review**: Flag records for human intervention
### Performance Optimization
- **Partitioning**: Process data in parallel chunks
- **Caching**: Store frequently accessed lookup data
- **Indexing**: Optimize database queries
- **Resource Management**: Control memory and CPU usage
# ETL Data Transformation Pipeline
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple
import logging
from datetime import datetime, timedelta
class ETLTransformer:
def __init__(self, config: Dict):
self.config = config
self.logger = logging.getLogger(__name__)
self.validation_rules = self._load_validation_rules()
def transform_customer_data(self, raw_data: pd.DataFrame) -> Tuple[pd.DataFrame, List[Dict]]:
"""Transform raw customer data with comprehensive error handling"""
errors = []
transformed_data = raw_data.copy()
try:
# Step 1: Data type conversion and standardization
transformed_data = self._standardize_data_types(transformed_data)
# Step 2: Data cleansing
transformed_data, cleansing_errors = self._cleanse_data(transformed_data)
errors.extend(cleansing_errors)
# Step 3: Data validation
transformed_data, validation_errors = self._validate_data(transformed_data)
errors.extend(validation_errors)
# Step 4: Data enrichment
transformed_data = self._enrich_data(transformed_data)
# Step 5: Deduplication
transformed_data = self._deduplicate_data(transformed_data)
# Step 6: Final formatting
transformed_data = self._format_final_data(transformed_data)
except Exception as e:
self.logger.error(f"Transformation failed: {str(e)}")
errors.append({
'type': 'TRANSFORMATION_ERROR',
'message': str(e),
'timestamp': datetime.now()
})
return transformed_data, errors
def _standardize_data_types(self, df: pd.DataFrame) -> pd.DataFrame:
"""Convert data types and standardize formats"""
# Convert date columns
date_columns = ['birth_date', 'registration_date', 'last_purchase_date']
for col in date_columns:
if col in df.columns:
df[col] = pd.to_datetime(df[col], errors='coerce')
# Convert numeric columns
numeric_columns = ['income', 'credit_score', 'purchase_amount']
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Standardize string columns
string_columns = ['first_name', 'last_name', 'email', 'phone']
for col in string_columns:
if col in df.columns:
df[col] = df[col].astype(str).str.strip().str.title()
return df
def _cleanse_data(self, df: pd.DataFrame) -> Tuple[pd.DataFrame, List[Dict]]:
"""Clean data by removing invalid values and standardizing formats"""
errors = []
# Remove rows with critical missing data
critical_columns = ['first_name', 'last_name', 'email']
initial_count = len(df)
df = df.dropna(subset=critical_columns)
removed_count = initial_count - len(df)
if removed_count > 0:
errors.append({
'type': 'MISSING_CRITICAL_DATA',
'count': removed_count,
'columns': critical_columns
})
# Clean email addresses
if 'email' in df.columns:
df['email'] = df['email'].str.lower().str.strip()
# Remove invalid email formats
email_mask = df['email'].str.match(r'^[^@]+@[^@]+\.[^@]+$')
invalid_emails = df[~email_mask]['email'].count()
df = df[email_mask]
if invalid_emails > 0:
errors.append({
'type': 'INVALID_EMAIL_FORMAT',
'count': invalid_emails
})
# Clean phone numbers
if 'phone' in df.columns:
df['phone'] = df['phone'].str.replace(r'[^0-9+()-]', '', regex=True)
# Remove phone numbers that are too short
phone_mask = df['phone'].str.len() >= 10
invalid_phones = df[~phone_mask]['phone'].count()
df = df[phone_mask]
if invalid_phones > 0:
errors.append({
'type': 'INVALID_PHONE_FORMAT',
'count': invalid_phones
})
return df, errors
def _validate_data(self, df: pd.DataFrame) -> Tuple[pd.DataFrame, List[Dict]]:
"""Apply business validation rules"""
errors = []
# Age validation
if 'birth_date' in df.columns:
age_mask = (datetime.now() - df['birth_date']).dt.days / 365.25 <= 120
invalid_ages = df[~age_mask]['birth_date'].count()
df = df[age_mask]
if invalid_ages > 0:
errors.append({
'type': 'INVALID_AGE',
'count': invalid_ages,
'rule': 'Age must be <= 120 years'
})
# Income validation
if 'income' in df.columns:
income_mask = (df['income'] >= 0) & (df['income'] <= 10000000)
invalid_income = df[~income_mask]['income'].count()
df = df[income_mask]
if invalid_income > 0:
errors.append({
'type': 'INVALID_INCOME',
'count': invalid_income,
'rule': 'Income must be between 0 and 10M'
})
# Credit score validation
if 'credit_score' in df.columns:
credit_mask = (df['credit_score'] >= 300) & (df['credit_score'] <= 850)
invalid_credit = df[~credit_mask]['credit_score'].count()
df = df[credit_mask]
if invalid_credit > 0:
errors.append({
'type': 'INVALID_CREDIT_SCORE',
'count': invalid_credit,
'rule': 'Credit score must be between 300 and 850'
})
return df, errors
def _enrich_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Add derived fields and external data"""
# Calculate age from birth date
if 'birth_date' in df.columns:
df['age'] = (datetime.now() - df['birth_date']).dt.days / 365.25
# Create customer segment based on income
if 'income' in df.columns:
df['customer_segment'] = pd.cut(
df['income'],
bins=[0, 50000, 100000, 200000, float('inf')],
labels=['Budget', 'Standard', 'Premium', 'Luxury']
)
# Create full name
if 'first_name' in df.columns and 'last_name' in df.columns:
df['full_name'] = df['first_name'] + ' ' + df['last_name']
# Add data quality score
df['data_quality_score'] = self._calculate_quality_score(df)
return df
def _deduplicate_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Remove duplicate records based on business rules"""
# Remove exact duplicates
initial_count = len(df)
df = df.drop_duplicates()
# Remove duplicates based on email (business rule: unique email per customer)
if 'email' in df.columns:
df = df.drop_duplicates(subset=['email'], keep='first')
# Remove duplicates based on phone (business rule: unique phone per customer)
if 'phone' in df.columns:
df = df.drop_duplicates(subset=['phone'], keep='first')
final_count = len(df)
removed_duplicates = initial_count - final_count
if removed_duplicates > 0:
self.logger.info(f"Removed {removed_duplicates} duplicate records")
return df
def _format_final_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Apply final formatting and select columns for target system"""
# Select final columns in target order
target_columns = [
'customer_id', 'first_name', 'last_name', 'full_name', 'email',
'phone', 'birth_date', 'age', 'income', 'credit_score',
'customer_segment', 'data_quality_score', 'created_at', 'updated_at'
]
# Only include columns that exist
existing_columns = [col for col in target_columns if col in df.columns]
df = df[existing_columns]
# Reset index
df = df.reset_index(drop=True)
return df
def _calculate_quality_score(self, df: pd.DataFrame) -> float:
"""Calculate data quality score based on completeness and validity"""
total_cells = len(df) * len(df.columns)
missing_cells = df.isnull().sum().sum()
completeness = (total_cells - missing_cells) / total_cells
# Additional quality factors could be added here
# For now, return completeness score
return round(completeness * 100, 2)
Batch Processing Orchestration
Design a robust orchestration system for managing ETL batch jobs with dependencies and error handling.
## ETL Job Orchestration
### Job Dependencies
- **Sequential Dependencies**: Jobs that must run in order
- **Parallel Dependencies**: Independent jobs that can run simultaneously
- **Conditional Dependencies**: Jobs that run based on conditions
- **Time Dependencies**: Jobs scheduled at specific times
### Scheduling Strategies
- **Cron-based**: Fixed time schedules
- **Event-driven**: Triggered by data availability
- **Dependency-based**: Run when prerequisites complete
- **Resource-based**: Run when resources are available
### Error Handling & Recovery
- **Retry Logic**: Automatic retry with exponential backoff
- **Fallback Strategies**: Alternative processing paths
- **Alerting**: Notifications for failures and issues
- **Manual Intervention**: Human oversight for complex issues
### Monitoring & Observability
- **Job Status Tracking**: Real-time job execution status
- **Performance Metrics**: Execution time, resource usage
- **Data Lineage**: Track data flow through the pipeline
- **Audit Trails**: Complete execution history
# ETL Job Orchestration with Apache Airflow
# dags/customer_etl_pipeline.py
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.bash_operator import BashOperator
from airflow.operators.email_operator import EmailOperator
from airflow.utils.dates import days_ago
from datetime import timedelta
import logging
default_args = {
'owner': 'data_engineering',
'depends_on_past': False,
'start_date': days_ago(1),
'email_on_failure': True,
'email_on_retry': False,
'retries': 3,
'retry_delay': timedelta(minutes=5),
'retry_exponential_backoff': True,
'max_retry_delay': timedelta(minutes=30)
}
dag = DAG(
'customer_etl_pipeline',
default_args=default_args,
description='Daily customer data ETL pipeline',
schedule_interval='0 2 * * *', # Daily at 2 AM
catchup=False,
max_active_runs=1
)
# Task 1: Extract customer data from source systems
extract_customers = PythonOperator(
task_id='extract_customer_data',
python_callable=extract_customer_data_func,
op_kwargs={
'source_systems': ['crm', 'website', 'mobile_app'],
'extract_date': '{{ ds }}'
},
dag=dag
)
# Task 2: Validate extracted data
validate_data = PythonOperator(
task_id='validate_extracted_data',
python_callable=validate_data_func,
op_kwargs={'validation_rules': 'customer_validation_rules.json'},
dag=dag
)
# Task 3: Transform customer data
transform_customers = PythonOperator(
task_id='transform_customer_data',
python_callable=transform_customer_data_func,
op_kwargs={
'transformation_config': 'customer_transformation_config.json',
'quality_threshold': 0.95
},
dag=dag
)
# Task 4: Load data to staging area
load_to_staging = PythonOperator(
task_id='load_to_staging',
python_callable=load_to_staging_func,
op_kwargs={'target_schema': 'staging'},
dag=dag
)
# Task 5: Run data quality checks
run_quality_checks = PythonOperator(
task_id='run_data_quality_checks',
python_callable=run_quality_checks_func,
op_kwargs={'quality_checks': 'customer_quality_checks.json'},
dag=dag
)
# Task 6: Load to production data warehouse
load_to_production = PythonOperator(
task_id='load_to_production',
python_callable=load_to_production_func,
op_kwargs={'target_schema': 'dim_customers'},
dag=dag
)
# Task 7: Update data lineage
update_lineage = PythonOperator(
task_id='update_data_lineage',
python_callable=update_lineage_func,
op_kwargs={'pipeline_name': 'customer_etl_pipeline'},
dag=dag
)
# Task 8: Send completion notification
send_notification = EmailOperator(
task_id='send_completion_notification',
to=['data-team@company.com'],
subject='Customer ETL Pipeline Completed - {{ ds }}',
html_content='''
<h2>Customer ETL Pipeline Completed Successfully</h2>
<p><strong>Date:</strong> {{ ds }}</p>
<p><strong>Status:</strong> Success</p>
<p><strong>Records Processed:</strong> {{ task_instance.xcom_pull(task_ids="transform_customers", key="records_processed") }}</p>
<p><strong>Data Quality Score:</strong> {{ task_instance.xcom_pull(task_ids="run_quality_checks", key="quality_score") }}%</p>
''',
dag=dag
)
# Define task dependencies
extract_customers >> validate_data >> transform_customers >> load_to_staging
load_to_staging >> run_quality_checks >> load_to_production
load_to_production >> update_lineage >> send_notification
# Error handling: If validation fails, send alert
validation_failure_alert = EmailOperator(
task_id='validation_failure_alert',
to=['data-team@company.com'],
subject='Customer ETL Pipeline Validation Failed - {{ ds }}',
html_content='''
<h2>Customer ETL Pipeline Validation Failed</h2>
<p><strong>Date:</strong> {{ ds }}</p>
<p><strong>Task:</strong> {{ task.task_id }}</p>
<p><strong>Error:</strong> {{ task_instance.xcom_pull(task_ids="validate_data", key="validation_errors") }}</p>
''',
trigger_rule='one_failed',
dag=dag
)
validate_data >> validation_failure_alert
Data Quality & Monitoring
Implement comprehensive data quality monitoring and alerting for the ETL pipeline.
## Data Quality Framework
### Quality Dimensions
- **Completeness**: Percentage of non-null values
- **Accuracy**: Data correctness and precision
- **Consistency**: Uniformity across datasets
- **Timeliness**: Data freshness and availability
- **Validity**: Conformance to business rules
### Quality Checks
- **Schema Validation**: Data type and format compliance
- **Business Rule Validation**: Domain-specific constraints
- **Statistical Validation**: Outlier detection and distribution analysis
- **Cross-field Validation**: Relationship and dependency checks
### Monitoring & Alerting
- **Real-time Monitoring**: Live quality metrics
- **Threshold-based Alerting**: Notifications when quality drops
- **Trend Analysis**: Quality degradation over time
- **Root Cause Analysis**: Investigation tools for quality issues
### Quality Improvement
- **Data Profiling**: Understanding data characteristics
- **Quality Scoring**: Quantitative quality assessment
- **Issue Tracking**: Systematic problem resolution
- **Continuous Improvement**: Iterative quality enhancement
-- Data Quality Monitoring System
CREATE SCHEMA data_quality;
-- Quality check definitions
CREATE TABLE data_quality.check_definitions (
check_id BIGSERIAL PRIMARY KEY,
check_name VARCHAR(255) NOT NULL,
table_name VARCHAR(255) NOT NULL,
column_name VARCHAR(255),
check_type VARCHAR(100) NOT NULL,
check_sql TEXT NOT NULL,
threshold_value DECIMAL(10,2),
severity VARCHAR(20) DEFAULT 'MEDIUM',
description TEXT,
is_active BOOLEAN DEFAULT TRUE,
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- Quality check results
CREATE TABLE data_quality.check_results (
result_id BIGSERIAL PRIMARY KEY,
check_id BIGINT REFERENCES data_quality.check_definitions(check_id),
run_timestamp TIMESTAMPTZ DEFAULT NOW(),
table_name VARCHAR(255),
column_name VARCHAR(255),
expected_value TEXT,
actual_value TEXT,
status VARCHAR(20), -- PASS, FAIL, WARNING
records_checked BIGINT,
records_failed BIGINT,
failure_rate DECIMAL(5,2),
error_message TEXT
);
-- Data quality metrics
CREATE TABLE data_quality.quality_metrics (
metric_id BIGSERIAL PRIMARY KEY,
table_name VARCHAR(255) NOT NULL,
metric_date DATE NOT NULL,
metric_type VARCHAR(100) NOT NULL,
metric_value DECIMAL(10,2) NOT NULL,
threshold_value DECIMAL(10,2),
status VARCHAR(20),
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- Quality alerts
CREATE TABLE data_quality.quality_alerts (
alert_id BIGSERIAL PRIMARY KEY,
check_id BIGINT REFERENCES data_quality.check_definitions(check_id),
alert_type VARCHAR(50) NOT NULL, -- THRESHOLD_BREACH, TREND_DEGRADATION, ANOMALY
severity VARCHAR(20) NOT NULL,
message TEXT NOT NULL,
alert_timestamp TIMESTAMPTZ DEFAULT NOW(),
acknowledged_at TIMESTAMPTZ,
acknowledged_by VARCHAR(100),
resolved_at TIMESTAMPTZ,
resolution_notes TEXT
);
-- Sample quality checks
INSERT INTO data_quality.check_definitions (check_name, table_name, column_name, check_type, check_sql, threshold_value, severity, description) VALUES
('customer_email_format', 'dim_customers', 'email', 'FORMAT_VALIDATION', 'SELECT COUNT(*) FROM dim_customers WHERE email !~ ''^[^@]+@[^@]+.[^@]+$''', 0, 'HIGH', 'Check email format validity'),
('customer_age_range', 'dim_customers', 'age', 'RANGE_VALIDATION', 'SELECT COUNT(*) FROM dim_customers WHERE age < 0 OR age > 120', 0, 'HIGH', 'Check age is within valid range'),
('customer_income_positive', 'dim_customers', 'income', 'RANGE_VALIDATION', 'SELECT COUNT(*) FROM dim_customers WHERE income < 0', 0, 'MEDIUM', 'Check income is non-negative'),
('customer_phone_format', 'dim_customers', 'phone', 'FORMAT_VALIDATION', 'SELECT COUNT(*) FROM dim_customers WHERE phone !~ ''^[0-9+()-]+$''', 0, 'MEDIUM', 'Check phone format validity'),
('customer_data_completeness', 'dim_customers', NULL, 'COMPLETENESS', 'SELECT COUNT(*) FROM dim_customers WHERE first_name IS NULL OR last_name IS NULL OR email IS NULL', 0, 'HIGH', 'Check required fields are not null');
-- Quality monitoring views
CREATE VIEW data_quality.v_quality_dashboard AS
SELECT
cd.check_name,
cd.table_name,
cd.column_name,
cd.severity,
cd.threshold_value,
cr.status,
cr.failure_rate,
cr.run_timestamp,
CASE
WHEN cr.status = 'FAIL' THEN 'CRITICAL'
WHEN cr.status = 'WARNING' THEN 'WARNING'
ELSE 'HEALTHY'
END as alert_level
FROM data_quality.check_definitions cd
LEFT JOIN data_quality.check_results cr ON cd.check_id = cr.check_id
WHERE cd.is_active = TRUE
AND cr.run_timestamp = (
SELECT MAX(run_timestamp)
FROM data_quality.check_results
WHERE check_id = cd.check_id
)
ORDER BY cd.severity DESC, cr.status DESC;
-- Quality trend analysis
CREATE VIEW data_quality.v_quality_trends AS
SELECT
table_name,
metric_type,
metric_date,
metric_value,
LAG(metric_value) OVER (PARTITION BY table_name, metric_type ORDER BY metric_date) as previous_value,
ROUND(((metric_value - LAG(metric_value) OVER (PARTITION BY table_name, metric_type ORDER BY metric_date)) / LAG(metric_value) OVER (PARTITION BY table_name, metric_type ORDER BY metric_date)) * 100, 2) as change_pct
FROM data_quality.quality_metrics
WHERE metric_date >= CURRENT_DATE - INTERVAL '30 days'
ORDER BY table_name, metric_type, metric_date;
-- Function to run quality checks
CREATE OR REPLACE FUNCTION run_quality_checks(p_table_name VARCHAR DEFAULT NULL)
RETURNS TABLE(check_name VARCHAR, status VARCHAR, records_checked BIGINT, records_failed BIGINT, failure_rate DECIMAL) AS $$
DECLARE
check_record RECORD;
result_record RECORD;
check_sql TEXT;
expected_count BIGINT;
actual_count BIGINT;
BEGIN
FOR check_record IN
SELECT * FROM data_quality.check_definitions
WHERE is_active = TRUE
AND (p_table_name IS NULL OR table_name = p_table_name)
LOOP
-- Execute the check SQL
EXECUTE check_record.check_sql INTO actual_count;
-- Determine status based on threshold
IF actual_count <= check_record.threshold_value THEN
status := 'PASS';
ELSIF actual_count <= check_record.threshold_value * 1.5 THEN
status := 'WARNING';
ELSE
status := 'FAIL';
END IF;
-- Get total records for the table
EXECUTE format('SELECT COUNT(*) FROM %I', check_record.table_name) INTO expected_count;
-- Calculate failure rate
failure_rate := CASE
WHEN expected_count > 0 THEN ROUND((actual_count::DECIMAL / expected_count) * 100, 2)
ELSE 0
END;
-- Store result
INSERT INTO data_quality.check_results (
check_id, table_name, column_name, expected_value, actual_value,
status, records_checked, records_failed, failure_rate
) VALUES (
check_record.check_id, check_record.table_name, check_record.column_name,
check_record.threshold_value::TEXT, actual_count::TEXT, status,
expected_count, actual_count, failure_rate
);
-- Return result
check_name := check_record.check_name;
records_checked := expected_count;
records_failed := actual_count;
RETURN NEXT;
END LOOP;
END;
$$ LANGUAGE plpgsql;
Implementation Checklist
ETL Batch Pipeline Implementation Checklist
Follow this comprehensive checklist to ensure successful implementation of your ETL batch processing pipeline
Data Architecture Design
Design staging areas and data flow architecture
ETL Pipeline Development
Implement data extraction, transformation, and loading logic
Job Orchestration
Set up workflow orchestration and scheduling
Data Quality Framework
Implement comprehensive data quality monitoring
Error Handling & Recovery
Establish robust error handling and recovery mechanisms
Performance Optimization
Optimize pipeline performance and resource usage
Monitoring & Alerting
Set up comprehensive monitoring and alerting
Architecture Decision Tree
ETL Batch Pipeline Architecture Decisions
Decision tree for choosing the right ETL batch processing architecture
Data Volume Assessment
Determine your data processing volume requirements
What is your data volume requirement?
Technology Stack Comparison
Technology Stack Comparison
Compare different ETL and orchestration tools
Apache Spark
processingUnified analytics engine for large-scale data processing
Key Features
Pros
- Excellent performance
- Rich APIs
- Scalable
- Active development
Cons
- Complex configuration
- Resource intensive
- Steep learning curve
Best For
- Large-scale data processing and analytics
Not For
- Simple data transformations
Apache Airflow
orchestrationPlatform to programmatically author, schedule, and monitor workflows
Key Features
Pros
- Excellent UI
- Rich ecosystem
- Python native
- Active community
Cons
- Complex setup
- Resource intensive
- Steep learning curve
Best For
- Complex workflow orchestration and scheduling
Not For
- Simple batch processing
Talend
etlData integration platform with visual design tools
Key Features
Pros
- Easy to use
- Rich features
- Good support
- Enterprise ready
Cons
- Expensive
- Vendor lock-in
- Limited customization
Best For
- Enterprise ETL with visual design requirements
Not For
- Custom processing logic
Apache NiFi
etlData flow automation tool for real-time data ingestion
Key Features
Pros
- Easy to use
- Real-time capabilities
- Good monitoring
- Scalable
Cons
- Limited transformation capabilities
- Resource intensive
- Complex setup
Best For
- Data ingestion and routing
Not For
- Complex data transformations
Ready to Build Your ETL Batch Pipeline?
Start implementing these patterns to create a robust and scalable ETL processing system.