Lambda Architecture
Hybrid batch and real-time processing architecture
Lambda Architecture Overview
Design a hybrid architecture combining batch and real-time processing for comprehensive data analytics.
## Lambda Architecture Components
### Three Layers
1. **Batch Layer**: Processes all historical data with high accuracy
2. **Speed Layer**: Processes real-time data with low latency
3. **Serving Layer**: Combines results for unified query interface
### Data Flow
- **New Data**: Enters both batch and speed layers simultaneously
- **Batch Processing**: Runs on full dataset for accuracy
- **Speed Processing**: Runs on recent data for timeliness
- **Result Merging**: Combines batch and speed results
### Key Benefits
- **Accuracy**: Batch layer provides correct results
- **Latency**: Speed layer provides real-time results
- **Fault Tolerance**: Independent processing layers
- **Scalability**: Each layer scales independently
// Lambda Architecture Configuration
@Configuration
public class LambdaArchitectureConfig {
@Bean
public BatchProcessor batchProcessor() {
return BatchProcessor.builder()
.batchSize(10000)
.processingInterval(Duration.ofHours(1))
.dataSource("historical-data")
.build();
}
@Bean
public SpeedProcessor speedProcessor() {
return SpeedProcessor.builder()
.windowSize(Duration.ofMinutes(5))
.processingInterval(Duration.ofSeconds(30))
.dataSource("real-time-stream")
.build();
}
@Bean
public ServingLayer servingLayer() {
return ServingLayer.builder()
.batchResults("batch-results")
.speedResults("speed-results")
.mergeStrategy(MergeStrategy.LATEST_WINS)
.build();
}
}
Batch Layer Implementation
Implement the batch processing layer for comprehensive historical data analysis.
## Batch Processing Strategy
### Processing Characteristics
- **Full Dataset**: Process entire historical dataset
- **High Accuracy**: Correct results with no approximations
- **Long Latency**: Hours to days for completion
- **Resource Intensive**: High CPU and memory usage
### Implementation Patterns
- **MapReduce**: Distributed processing framework
- **Partitioning**: Divide data for parallel processing
- **Incremental Processing**: Process only new data
- **Result Storage**: Store in optimized format
### Data Storage
- **Raw Data**: Immutable append-only storage
- **Processed Views**: Pre-computed aggregations
- **Indexing**: Optimize for query performance
- **Compression**: Reduce storage costs
// Batch Processing Implementation
@Component
public class BatchProcessor {
@Autowired
private SparkSession sparkSession;
public void processBatchData(String date) {
// Read historical data
Dataset<Row> historicalData = sparkSession.read()
.option("basePath", "/data/historical")
.parquet("/data/historical/*");
// Apply batch transformations
Dataset<Row> processedData = historicalData
.filter(col("date").leq(date))
.groupBy("user_id", "category")
.agg(
sum("amount").as("total_amount"),
count("*").as("transaction_count"),
avg("amount").as("avg_amount")
);
// Write results to serving layer
processedData.write()
.mode(SaveMode.Overwrite)
.partitionBy("date")
.parquet("/data/batch-results/" + date);
}
}
Implementation Checklist
Implementation Checklist
Track your progress in implementing Lambda architecture
Architecture Design
Design the three-layer Lambda architecture
Batch Layer
Implement batch processing for historical data
Speed Layer
Implement real-time processing for recent data
Serving Layer
Implement result merging and query interface
Architecture Decision Tree
Lambda Architecture Decisions
Decision tree for choosing Lambda architecture components
Data Processing Requirements
Choose the appropriate data processing architecture based on your requirements
What is your data processing requirement?
Technology Stack Comparison
Technology Stack Comparison
Compare different technologies for implementing Lambda architecture
Apache Spark
batchUnified analytics engine for batch processing
Key Features
Pros
- Excellent performance
- Rich APIs
- Scalable
- Active development
Cons
- Complex configuration
- Resource intensive
- Steep learning curve
Best For
- Large-scale batch data processing
Not For
- Simple data transformations
Apache Flink
streamingStream processing framework for real-time analytics
Key Features
Pros
- Advanced streaming features
- Excellent performance
- Rich APIs
Cons
- Complex configuration
- Resource intensive
- Limited ecosystem
Best For
- Complex event processing and real-time analytics
Not For
- Simple data transformations
Ready to Build Your Lambda Architecture?
Start implementing these patterns for hybrid batch and real-time processing.