Lambda Architecture

Hybrid batch and real-time processing architecture

Lambda Architecture Overview

Design a hybrid architecture combining batch and real-time processing for comprehensive data analytics.


## Lambda Architecture Components

### Three Layers
1. **Batch Layer**: Processes all historical data with high accuracy
2. **Speed Layer**: Processes real-time data with low latency
3. **Serving Layer**: Combines results for unified query interface

### Data Flow
- **New Data**: Enters both batch and speed layers simultaneously
- **Batch Processing**: Runs on full dataset for accuracy
- **Speed Processing**: Runs on recent data for timeliness
- **Result Merging**: Combines batch and speed results

### Key Benefits
- **Accuracy**: Batch layer provides correct results
- **Latency**: Speed layer provides real-time results
- **Fault Tolerance**: Independent processing layers
- **Scalability**: Each layer scales independently
// Lambda Architecture Configuration
@Configuration
public class LambdaArchitectureConfig {
    
    @Bean
    public BatchProcessor batchProcessor() {
        return BatchProcessor.builder()
            .batchSize(10000)
            .processingInterval(Duration.ofHours(1))
            .dataSource("historical-data")
            .build();
    }
    
    @Bean
    public SpeedProcessor speedProcessor() {
        return SpeedProcessor.builder()
            .windowSize(Duration.ofMinutes(5))
            .processingInterval(Duration.ofSeconds(30))
            .dataSource("real-time-stream")
            .build();
    }
    
    @Bean
    public ServingLayer servingLayer() {
        return ServingLayer.builder()
            .batchResults("batch-results")
            .speedResults("speed-results")
            .mergeStrategy(MergeStrategy.LATEST_WINS)
            .build();
    }
}

Batch Layer Implementation

Implement the batch processing layer for comprehensive historical data analysis.


## Batch Processing Strategy

### Processing Characteristics
- **Full Dataset**: Process entire historical dataset
- **High Accuracy**: Correct results with no approximations
- **Long Latency**: Hours to days for completion
- **Resource Intensive**: High CPU and memory usage

### Implementation Patterns
- **MapReduce**: Distributed processing framework
- **Partitioning**: Divide data for parallel processing
- **Incremental Processing**: Process only new data
- **Result Storage**: Store in optimized format

### Data Storage
- **Raw Data**: Immutable append-only storage
- **Processed Views**: Pre-computed aggregations
- **Indexing**: Optimize for query performance
- **Compression**: Reduce storage costs
// Batch Processing Implementation
@Component
public class BatchProcessor {
    
    @Autowired
    private SparkSession sparkSession;
    
    public void processBatchData(String date) {
        // Read historical data
        Dataset<Row> historicalData = sparkSession.read()
            .option("basePath", "/data/historical")
            .parquet("/data/historical/*");
        
        // Apply batch transformations
        Dataset<Row> processedData = historicalData
            .filter(col("date").leq(date))
            .groupBy("user_id", "category")
            .agg(
                sum("amount").as("total_amount"),
                count("*").as("transaction_count"),
                avg("amount").as("avg_amount")
            );
        
        // Write results to serving layer
        processedData.write()
            .mode(SaveMode.Overwrite)
            .partitionBy("date")
            .parquet("/data/batch-results/" + date);
    }
}

Implementation Checklist

Implementation Checklist

Track your progress in implementing Lambda architecture

Progress0 / 4 completed

Architecture Design

high

Design the three-layer Lambda architecture

Planning

Batch Layer

high

Implement batch processing for historical data

Implementation

Speed Layer

high

Implement real-time processing for recent data

Implementation

Serving Layer

medium

Implement result merging and query interface

Implementation

Architecture Decision Tree

Lambda Architecture Decisions

Decision tree for choosing Lambda architecture components

Decision Point

Data Processing Requirements

Choose the appropriate data processing architecture based on your requirements

What is your data processing requirement?

Technology Stack Comparison

Technology Stack Comparison

Compare different technologies for implementing Lambda architecture

Category:
Sort by:

Apache Spark

batch

Unified analytics engine for batch processing

4.8/5
45%% market share
Free
Learning
Hard
Community
Large
Documentation
Excellent
Features
4
Key Features
Batch processingML supportGraph processingSQL
Pros
  • Excellent performance
  • Rich APIs
  • Scalable
  • Active development
Cons
  • Complex configuration
  • Resource intensive
  • Steep learning curve
Best For
  • Large-scale batch data processing
Not For
  • Simple data transformations

Apache Flink

streaming

Stream processing framework for real-time analytics

4.6/5
25%% market share
Free
Learning
Hard
Community
Medium
Documentation
Good
Features
3
Key Features
Event time processingExactly-once semanticsState management
Pros
  • Advanced streaming features
  • Excellent performance
  • Rich APIs
Cons
  • Complex configuration
  • Resource intensive
  • Limited ecosystem
Best For
  • Complex event processing and real-time analytics
Not For
  • Simple data transformations

Ready to Build Your Lambda Architecture?

Start implementing these patterns for hybrid batch and real-time processing.